Forschende am PSI haben zum ersten Mal beobachtet, wie sich winzige Magnete in einer speziellen Anordnung nur aufgrund von Temperaturänderungen ausrichten. Der Einblick in die Vorgänge innerhalb von sogenanntem künstlichem Spin-Eis könnte eine wichtige Rolle spielen bei der Entwicklung neuartiger Hochleistungsrechner.
Abbildung: (a) Rasterelektronenmikroskopische Aufnahme von lithografisch erzeugtem künstlichem Kagome-Spin-Eis, das die durch magnetische Brücken asymmetrisch verbundenen Permalloy-Magnete im Nanomassstab zeigt. Die kleinsten Brücken sind nur 10 Nanometer breit. (b) Die resultierende magnetische Ordnung wird mit einem Photoemissions-Elektronenmikroskop an der Synchrotron Lichtquelle Schweiz SLS abgebildet. Aus dem Hell-Dunkel-Kontrast lässt sich die magnetische Konfiguration bestimmen und mit Computersimulationen vergleichen.
(Bild: Kevin Hofhuis)
Gefriert Wasser zu Eis, ordnen sich die Wassermoleküle mit ihren Wasserstoff- und Sauerstoffatomen in einer komplexen Struktur an. Wasser und Eis sind unterschiedliche Phasen und die Umwandlung von Wasser zu Eis wird als Phasenübergang bezeichnet. Im Labor lassen sich Kristalle herstellen, bei denen die elementaren magnetischen Momente, die sogenannten Spins, mit Eis vergleichbare Strukturen bilden. Deshalb bezeichnen Forschende diese Strukturen auch als Spin-Eis. «Wir haben künstliches Spin-Eis hergestellt, das im Wesentlichen aus Nanomagneten besteht, die so klein sind, dass sich ihre Ausrichtung einzig aufgrund der Temperatur ändern kann», erklärt der Physiker Kevin Hofhuis, der soeben seine Doktorarbeit am PSI abgeschlossen hat und nun an der Yale-Universität in den USA arbeitet.
Im verwendeten Material sind die Nanomagnete in sechseckigen, also hexagonalen Strukturen angeordnet – ein Muster, das man aus der japanischen Korbflechtkunst unter dem Namen «Kagome» kennt. «Bei künstlichem Kagome-Spin-Eis wurden magnetische Phasenübergänge theoretisch vorhergesagt, aber bisher nie beobachtet», sagt Laura Heyderman, Leiterin des Labors für Multiskalen-Materialien-Experimente am PSI und Professorin an der ETH Zürich. «Der Nachweis von Phasenübergängen gelang nun dank der Anwendung modernster Lithografie bei der Herstellung des Materials im PSI-Reinraum sowie einer speziellen Mikroskopie-Methode an der Synchrotron Lichtquelle Schweiz SLS.»
Bildergalerie
Der Trick: winzige Magnetbrücken
Für ihre Proben verwendeten die Forschenden eine Nickel-Eisen-Verbindung, deutsch Mu-Metall, englisch Permalloy genannt, die als dünner Film auf ein Siliziumsubstrat aufgetragen wurde. Auf dieser Oberfläche wurde mit einem Lithografie-Verfahren wiederholt das kleine, hexagonale Muster der Nanomagnete geformt, wobei ein Nanomagnet etwa einen halben Mikrometer (Millionstelmeter) lang und ein Sechstelmikrometer breit war. Doch damit nicht genug. «Der Trick war, dass wir die Nanomagnete mit winzigen magnetischen Brücken verbanden», sagt Hofhuis. «Dadurch kam es zu kleinen Veränderungen des Systems, die es uns erst ermöglichten, den Phasenübergang so abzustimmen, dass wir ihn beobachten konnten. Allerdings mussten diese Brücken wirklich sehr klein sein, denn wir wollten das System nicht allzu sehr verändern.» Dass dieses Unterfangen tatsächlich gelang, erstaunt den Physiker nachträglich immer noch. Denn mit der Schaffung der Nanobrücken stiess er an die Grenzen der technisch möglichen räumlichen Auflösung der heutigen Lithografie-Methoden. Einige der Brücken sind nur zehn Nanometer (Milliardstelmeter) gross. Überhaupt seien die Grössenordnungen bei diesem Experiment beeindruckend, sagt Hofhuis: «Während die kleinsten Strukturen auf unserer Probe im 10-Nanometer-Bereich liegen, hat das Instrument zu deren Abbildung – die SLS – einen Umfang von fast 300 Metern.» Und Heyderman ergänzt: «Die Strukturen, die wir untersuchen, sind also 30 Milliarden Mal kleiner als die Instrumente, mit denen wir sie betrachten.»
Mikroskopie und Theorie
An der SLS verwendete das Team eine spezielle Mikroskopie-Methode, die es ermöglicht, den magnetischen Zustand jedes einzelnen Nanomagneten in der Anordnung zu beobachten, die sogenannte Photoemissions-Elektronenmikroskopie an der Strahllinie SIM. Dabei wurden sie von Armin Kleibert, dem verantwortlichen Wissenschaftler bei SIM, tatkräftig unterstützt. «Wir konnten ein Video aufnehmen, das zeigt, wie die Nanomagnete miteinander wechselwirken, und dies allein als Funktion der Temperatur», fasst Hofhuis zusammen. Bei den ursprünglichen Bildern handelte es sich um einfache Schwarz-Weiss-Kontraste, die ab und zu wechselten. Daraus konnten die Forschenden die Konfiguration der Spins, also die Ausrichtung der magnetischen Momente, ableiten. «Sieht man sich ein solches Video an, weiss man aber noch nicht, in welcher Phase man sich befindet», erklärt Hofhuis. Dazu brauchte es theoretische Überlegungen, die Peter Derlet, PSI-Physiker und Titularprofessor an der ETH Zürich, beisteuerte. Seine Simulationen zeigten, was theoretisch bei den Phasenübergängen geschehen sollte.
Phasenübergänge manipulieren
Erst der Vergleich der aufgenommenen Bilder mit diesen Simulationen bewies, dass es sich bei den mikroskopisch beobachteten Vorgängen tatsächlich um Phasenübergänge handelt. Die neue Studie ist ein weiterer Erfolg in der Erforschung von künstlichem Spin-Eis, welches die Gruppe von Laura Heyderman seit mehr als einem Jahrzehnt untersucht. «Das Grossartige an diesen Materialien ist, dass wir sie massschneidern und direkt sehen können, was in ihnen passiert», sagt die Physikerin. «Wir können alle möglichen faszinierenden Verhaltensweisen beobachten, darunter die Phasenübergänge und Ordnungen, die vom Layout der Nanomagnete abhängen. Dies ist bei Spin-Systemen in herkömmlichen Kristallen nicht möglich.» Obwohl diese Untersuchungen zurzeit noch reine Grundlagenforschung sind, denken die Forschenden bereits an mögliche Anwendungen. «Jetzt, da wir wissen, dass wir in diesen Materialien verschiedene Phasen sehen und auch manipulieren können, eröffnen sich neue Möglichkeiten», sagt Hofhuis.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Die Kontrolle von verschiedenen magnetischen Phasen könnte für neuartige Arten der Datenverarbeitung interessant sein. Am PSI und anderswo wird untersucht, wie die Komplexität von künstlichem Spin-Eis für neuartige Hochgeschwindigkeitsrechner mit geringem Stromverbrauch genutzt werden könnte. «Dabei orientiert man sich an der Informationsverarbeitung im Gehirn und macht sich zunutze, wie das künstliche Spin-Eis auf einen Reiz wie ein Magnetfeld oder elektrischen Strom reagiert», erklärt Heyderman.