Geophysiker der ETH Zürich haben gezeigt, dass im Rauschunterdrückungssystem von Glasfasernetzen jede einzelne Welle eines Erdbebens der Magnitude 3,9 registriert wird. Mit dieser Methode lassen sich kostengünstig engmaschige Erdbeben- und Tsunami-Frühwarnsysteme aufbauen.
Glasfasern als Sensor: Forscher gewinnen Erschütterungsdaten aus der Rauschunterdrückung, die in der optischen Datenkommunikation die Genauigkeit der Signale erhöht.
(Bild: Adobe Stock / KI-generiert)
Ein dichtes Netz von Erdbebenmessstationen ist in reichen Ländern wie der Schweiz eine Selbstverständlichkeit. In weniger entwickelten Ländern und auf dem Grund der Weltmeere ist das nicht der Fall. Während in ärmeren Weltgegenden das Geld für die nötige Anzahl an Sensoren fehlt, müssen in den Ozeanen aufwändige Systeme installiert werden, um die minimalen Druckänderungen in Tausenden von Metern Tiefe zuverlässig zu messen und die Datensignale an die Meeresoberfläche zu bringen.
Zweitverwertung der Rauschunterdrückungsdaten
Wissenschaftler vom Institut für Geophysik der ETH Zürich haben jetzt in Zusammenarbeit mit dem Eidgenössischen Institut für Metrologie Metas eine verblüffende und kostengünstige Methode gefunden, mit der genaue Erdbebenmessungen auch am Ozeanboden und in weniger entwickelten Ländern möglich werden. «Wir nutzen eine Funktion der bestehenden Glasfaserinfrastruktur und gewinnen die Erschütterungsdaten aus der aktiven Rauschunterdrückung, die in der optischen Datenkommunikation die Genauigkeit der Signale erhöht», erklärt Geophysikprofessor Andreas Fichtner. Die Daten der aktiven Rauschunterdrückung müssen dabei lediglich gespeichert und ausgewertet werden. Dazu sind weder zusätzliche Geräte noch teure Infrastruktur nötig.
Erschütterungs-«Lärm» wird ausgelöscht
Um zu verstehen, wie eine Active Phase Noise Cancellation (PNC) Erderschütterungen messen kann, hilft ein Vergleich mit den Rauschunterdrückungssystemen heutiger High-End-Kopfhörer, die den Umgebungslärm für Anwender:innen nahezu vollständig verschwinden lassen. Bei diesen nehmen Mikrofone die Aussengeräusche auf. Praktisch in Echtzeit wird dann genau das Gegensignal in die Tonsignale eingespeist. Dieses Gegensignal löscht die Geräusche von aussen eins zu eins aus und macht sie damit unhörbar.
Im PNC eines optischen Datenkommunikationssystems wird der «Umgebungslärm» in der Glasfaser durch den Vergleich des ursprünglich gesendeten Signals mit einem Teilsignal, das vom Empfänger reflektiert wird, bestimmt. Die Differenz zwischen den beiden Signalen zeigt dann die Störungen an, denen das Lichtsignal auf seinem Weg durch die Glasfaser ausgesetzt war. Genau wie bei der Rauschunterdrückung in Kopfhörern können diese Störungen durch ein entsprechendes Gegensignal ausgelöscht werden.
Deformationen verändern Frequenz minimal
Der «Lärm» in der optischen Datenübertragung entsteht durch mikrometergrosse Verformungen der Fasern. Sie sind die Folge von Deformationen der Erdoberfläche aufgrund von Erdbeben, Wasserwellen, Luftdruckdifferenzen und von menschlichen Aktivitäten. Dabei verkürzt oder verlängert jede Deformation die Faser geringfügig. Dies wiederum führt zu einem sogenannten fotoelastischen Effekt, der die Lichtgeschwindigkeit in der Faser minimal schwanken lässt.
Sowohl die Veränderungen der Faserlänge als auch die Schwankungen der Lichtgeschwindigkeit verändern die Frequenz des Lichtsignals um einen winzigen Faktor. Dieses Phänomen ist schon seit einigen Jahren bekannt und wurde bisher bereits mit speziellen Messinstrumenten zur Messung von Erschütterungen genutzt.
Bei der von den ETH- und Metas-Wissenschaftlern untersuchten Rauschunterdrückung der Glasfaserkommunikation der Schweizer Atomuhren-Infrastruktur sind diese zusätzlichen Messinstrumente überflüssig. Die Deformationen lassen sich einfach aus der Korrektur der Zeitsignale ablesen. Diese korrigiert die Wellenlänge des Signals im Terahertz-Bereich (1012 Schwingungen pro Sekunde) jeweils um einige hundert Hertz und damit um rund ein Zehntel Milliardstel.
So klein die Änderungen sind, so klar ist das Bild, das sie von den Erschütterungen zeigen, denen die Glasfaserkabel während der Beobachtungszeit ausgesetzt sind. «Wir konnten im PNC der Glasfaserverbindung zwischen Basel und dem Atomuhrenstandort am Metas in Bern nicht nur jede einzelne Welle eines Erdbebens von Magnitude 3,9 im Elsass detailliert nachvollziehen», erklärt Fichtner: «Eine Modellierung des Bebens aufgrund unserer Daten entsprach auch äusserst exakt den Messungen des Schweizerischen Erdbebendienstes.»
Diese exakte Übereinstimmung zeigt, dass sich mit den PNC-Daten sowohl der Ort als auch die Tiefe und Stärke eines Bebens mit hoher Genauigkeit bestimmen lassen. «Das ist vor allem für eine lückenlose Tsunami-Warnung oder für die Erdbebenmessung in weniger entwickelten Regionen der Welt sehr interessant», sagt Fichtner.
ETH-Mittel für freie Forschung zahlen sich aus
Vorbildlich ist für Fichtner aber auch die Entstehungsgeschichte der neuen Methode. Die Idee entstand aus einer Diskussion der ETH-Forschenden mit einem Spezialisten von Metas. Und so schnell wie das ETH-Metas-Team das Potenzial der PNC-Daten erkannte, so schnell konnte es die Idee umsetzen. «Damit überraschende Wissenschaft entstehen kann, müssen Gelder für Forschungsaktivitäten zur Verfügung stehen, die keinem vorher definierten Ziel folgen», betont Fichtner: «Die ETH ist für ein solches Projekt ideal. Im Gegensatz zu vielen anderen Hochschulen stehen mir hier als Forscher auch ungebundene Mittel zur Verfügung.»
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.